一阶迎风格式
A. 哪位高手帮帮忙,在fluent中采用迎风格式差分时如何确定选取那一侧的值迎风差分的含义到底是什么
是这样的,迎风表示的是一个因果关系,信息是从上游传到下游,而不会从下游向上传播,意思就是某一点会受到上游的影响,而不会受到下游的影响。所以差分格式就是该点的值和上游的值进行差分。你可以用速度方向来判断上下游,因为速度肯定是从上游到下游的,类似于河流一样。这样说你明白了吗?
B. 如何建立差分格式如图。跪求!
许多物理现象随着时间而发生变化、如热传导过程、气体扩散过程和波的传播过程都与时间有关。描述这些过程的偏微分方程具有这样的性质;若初始时刻t=t0的解已给定,则t>t0时刻的解完全取决于初始条件和某些边界条件。利用差分法解这类问题,就是从初始值出发,通过差分格式沿时间增加的方向,逐步求出微分方程的近似解。 最简单的双曲型方程的初值问题是:
式中 为已知初值函数。这初值问题的解是:
由(2)可见,(1a)(1b)的解(2)当a>0时代表一个以有限的速度a沿特征线x-at=常数向右传播的波,而解 在点 的值完全由 在x轴上的点 的值决定。A点就是双曲型方程(1a)在P点的依赖域(图1)。现以初值问题(1)为例介绍初值问题差分方法的基本思想。
①剖分网格
用网格覆盖(1a),(1b)的定解区域,如图2所示,在x,t平面的上半部作两族平行于坐标轴的直线:
并称之为网格线。 分别称为空间步长和时间步长。网格线的交点 称为格点。
②建立差分格式
以下除特别声明外,总设a>0,由泰勒公式,有:
即
式中
是微分方程(1a)用它的解在相邻三个格点(见图2)上的值的差分来表示的形式。略去(4)中关于 高阶项 ,得到一个较简单的差分方程,但微分方程的解 不再是这方程的解,设这个方程的解是 , 满足的方程是:
式(6)还可写成:
初值条件(1b)此时就是:
差分方程(6)和相应的初值条件(7)合称差分格式,利用这些格式可逐步算出t=△t,2△t,…各时间层的 , ,…,等等。这个把微分方程化为近似的差分方程的过程常称为离散化。
③差分格式的截断误差和相容性
(5)中的是把微分方程充分光滑的解代入差分方程(6)的结果,它说明微分方程(1a)和差分方程(6)的区别,称为差分格式(6)的截断误差,式(6)的截断误差对△t和△x都是一阶的,写成O(△x+△t),因此称差分格式(6)为一阶相容格式。一般说,如果△x,△t趋于零,截断误差也趋于零,则差分方程与微分方程是相容的。不相容的格式的解不能作为原微分方程的近似解,因而是无用的。方程(1a)的离散化过程也不是唯一的。例如取数值微分公式:
代替微分方程(1a)中的 ,可得另一个差分方程:
它的截断误差是O(△x+△t)阶的,也是相容的差分格式,再若用数值微分公式
代替(1a)中的 ,又得到截断误差为O(△x+△t)的相容差分格式:
但是,并不是每个相容格式都有用。
④差分格式的收敛性
设 是求解区域中的一点,取步长 使 ,用差分格式算出 ,如果当△x,△t→0时, 便可用步长 充分小时的作为微分方程的解 的近似,这种差分格式便是收敛的。
双曲型微分方程的解,对求解区域内一点 而言,在初值区域内有一个依赖域,差分方程也是如此,对于差分方程(6),点 的依赖域是初值线上区间 。如令 =常数, ,则差分方程(6)在点 的依赖域为 ,并且步长比r固定时,依赖域与 无关。
差分方程(9)在 的依赖域是 ,而差分方程(11)的依赖域则是 ,R.库朗等人曾经证明,差分格式收敛的一个必要条件是差分方程的依赖域应包含微分方程的依赖域,这个条件叫作“库朗条件”。从图3中可以看到,对于差分方程(6),这个条件是 ,即 。对于格式(9),库朗条件是 ,两者不同。对于格式(11),库朗条件是 ;在a>0时,显然不能成立,所以格式(11)当a>0时不收敛,因而也是无用的。格式(6)在a>0而库朗条件 满足时,的确是收敛的。因为 离散化误差 适合
由此可知:
又因差分格式与微分方程的初值相同, 。于是可知
这说明条件 满足时,格式(6)收敛。
如果a<0,格式(6)不收敛。但当 时,格式(11)收敛。这两个格式称为“迎风格式”,因为a>0时, 用向后差商代替,往上风取近似值;当a<0时则用向前差商代替,也是往上风取近似值。可见作(1)的差分格式时,要考虑波的传播方向。
⑤差分格式的稳定性
用一个差分格式计算 时,初值 的误差必然要影响到以后各层 。通常希望这误差的影响不会越来越大,以致完全歪曲了差分方法的真解,这便是稳定性问题。讨论时,常把问题化简,设初值 有误差 ,而以后的计算并不产生误差,由于误差 ,使 变成了 ,但 仍满足 所适合的差分格式。定义一种衡量t=tn层格点上 的大小的所谓范数 ,若有常数K>0使当△t、△x→0而0≤t=n△t≤T时,恒有 ,则称此差分格式是稳定的。以格式(6)为例,适合差分方程:
这说明,用格式(6)计算时,若步长比合于库朗条件,则初值误差的影响不增长,取使△t缩小,算到t=T时,也不再增大,因而格式是稳定的。
对于线性偏微分方程组的稳定性理论,J.von诺伊曼曾用傅里叶分析作了系统研究,把差分方程的解表成谐波的叠加,考察其中一个谐波
的增长情况,式中k为实数;G=G(k,△t)称为增长因子。若对于一切谐波,(12)的振幅一致有界,即对一切合于O≤n△t≤T的n和充分小的△t都有|Gn|≤K,K为常数,则此差分格式是稳定的。具体地说,对格式(6),把(12)代入(6),得:
而
故当 时,|G|≤1,解的振幅不增加,所以格式(6)是稳定的。
相容性和库朗条件都不能保证稳定性,例如对格式(9),把(12)代入,得:
而
故当sin k△x≠0时,恒有|G|>1,解的振幅逐层增加,所以虽然格式(9)是相容的格式,并且适合库朗条件,但它仍是不稳定的,因而也是无用的。
P.D.拉克斯1956年曾证明,对于线性偏微分方程组的适定的初值问题,一个与之相容的线性差分格式是收敛的格式的充分必要条件是这格式的稳定性。
非线性问题没有相应的等价定理。 物理上的定常问题,如弹性力学中的平衡问题,亚声速流、不可压枯性流、电磁场及引力场等可归结为椭圆型方程。其定解问题为各种边值问题,即要求解在某个区域D内满足微分方程,在边界上满足给定的边界条件。椭圆型方程的差分解法可归结为选取合理的差分网格,建立差分格式,求解代数方程组以及考察差分格式的收敛性等问题。
偏微分方程边值问题的差分方程组的特点是系数矩阵中非零元素很少,即是稀疏矩阵。近年来由于稀疏矩阵技术的发展,解差分方程组时,直接法受到了较多的重视。迭代法是用逐次逼近的方式得到差分方程组的解,它的存储量小,程序简单,因此常用于椭圆型差分方程组的求解。迭代方法很多,最基本的有三种:①同时位移法(也称雅可比法)②逐个位移法(也称赛德耳法)③松弛法三个方法中超松弛法收敛最快,是常用的方法之一。
C. 亲们,帮个忙翻译一下啊
计算流体动力学代码的vent-air'是发达国家使用的语言
三维稳态模拟,等温压缩城市
气流。标准的K - 3模型是用来模型的影响
湍流。所有离散方程采用有限
体积法。混合迎风和中心差分格式
是物料离散对流项,其中一个选项
二阶迎风格式和格式。本
离散微分方程求解的简单
演算法。
D. 什么是中心差分
中心差分格式,就是界面上的物理量采用线性插值公式来计算。
中文名
中心差分外文名Central difference含 义采用线性插值公式来计算优 点比采用迎风差分的结果误差更小
中心差分及一阶迎风格式优缺点的讨论:
1. 在对流项中心差分的数值解不出现振荡的参数范围内,在相同的网格节点数下,采用中心差分的计算结果要比采用迎风差分的结果误差更小。
2. 一阶迎风格式离散方程系数aE及aW永远大于零,因而无论在任何计算条件下都不会引起解的振荡,永远可以得出在物理上看起来是合理的解。正是由于这一点,使一阶迎风格式在过去半个世纪中得到广泛的采用。
3. 由于一阶迎风格式的截差阶数低,除非采用相当细密的网格,其计算结果的误差较大。近10年来,对于一阶迎风等低阶格式的应用,某些国际学术刊物已提出了限制条件。
4. 一阶迎风格式的使用实践也为构造性能更优良的离散格式提供了有益的启示,应当在迎风方向上获取比背风方向上更多的信息以较好地反映对流过程的物理本质。在最近20余年中发展起来的对流项离散格式,如二阶迎风、三阶迎风及QUICK格式都吸取了这一基本思想。
5. 软件的调试过程或计算的中间过程(如多重网格的粗网格上、非线性问题的迭代过程)中,一阶迎风由于其绝对稳定的特性仍有其应用的价值。
E. fluent中一阶迎风与二阶迎风有什么区别请高手指教
你需要了解Fluent
软件的大概的计算过程(有限体积法):核心是将微分方程转化为线性方程求解,即离散化,一阶迎风与二阶迎风是指他的离散格式(插值计算);
两者的区别就是一阶只保留了Taylor级数的第一项,而二阶保留了第二项和第三项;当然精度更高一些;
这个你需要好好看看计算流体力学,或者数值分析;对于你对参数设置以及结果的衡量,判断很重要;
F. 向后差分和向前差分求偏微分方程结果一样吗
许多物理现象随着时间而发生变化、如热传导过程、气体扩散过程和波的传播过程都与时间有关。描述这些过程的偏微分方程具有这样的性质;若初始时刻t=t0的解已给定,则t>t0时刻的解完全取决于初始条件和某些边界条件。利用差分法解这类问题,就是从初始值出发,通过差分格式沿时间增加的方向,逐步求出微分方程的近似解。 最简单的双曲型方程的初值问题是:
式中 为已知初值函数。这初值问题的解是:
由(2)可见,(1a)(1b)的解(2)当a>0时代表一个以有限的速度a沿特征线x-at=常数向右传播的波,而解 在点 的值完全由 在x轴上的点 的值决定。A点就是双曲型方程(1a)在P点的依赖域(图1)。现以初值问题(1)为例介绍初值问题差分方法的基本思想。
①剖分网格
用网格覆盖(1a),(1b)的定解区域,如图2所示,在x,t平面的上半部作两族平行于坐标轴的直线:
并称之为网格线。 分别称为空间步长和时间步长。网格线的交点 称为格点。
②建立差分格式
以下除特别声明外,总设a>0,由泰勒公式,有:
即
式中
是微分方程(1a)用它的解在相邻三个格点(见图2)上的值的差分来表示的形式。略去(4)中关于 高阶项 ,得到一个较简单的差分方程,但微分方程的解 不再是这方程的解,设这个方程的解是 , 满足的方程是:
式(6)还可写成:
初值条件(1b)此时就是:
差分方程(6)和相应的初值条件(7)合称差分格式,利用这些格式可逐步算出t=△t,2△t,…各时间层的 , ,…,等等。这个把微分方程化为近似的差分方程的过程常称为离散化。
③差分格式的截断误差和相容性
(5)中的是把微分方程充分光滑的解代入差分方程(6)的结果,它说明微分方程(1a)和差分方程(6)的区别,称为差分格式(6)的截断误差,式(6)的截断误差对△t和△x都是一阶的,写成O(△x+△t),因此称差分格式(6)为一阶相容格式。一般说,如果△x,△t趋于零,截断误差也趋于零,则差分方程与微分方程是相容的。不相容的格式的解不能作为原微分方程的近似解,因而是无用的。方程(1a)的离散化过程也不是唯一的。例如取数值微分公式:
代替微分方程(1a)中的 ,可得另一个差分方程:
它的截断误差是O(△x+△t)阶的,也是相容的差分格式,再若用数值微分公式
代替(1a)中的 ,又得到截断误差为O(△x+△t)的相容差分格式:
但是,并不是每个相容格式都有用。
④差分格式的收敛性
设 是求解区域中的一点,取步长 使 ,用差分格式算出 ,如果当△x,△t→0时, 便可用步长 充分小时的作为微分方程的解 的近似,这种差分格式便是收敛的。
双曲型微分方程的解,对求解区域内一点 而言,在初值区域内有一个依赖域,差分方程也是如此,对于差分方程(6),点 的依赖域是初值线上区间 。如令 =常数, ,则差分方程(6)在点 的依赖域为 ,并且步长比r固定时,依赖域与 无关。
差分方程(9)在 的依赖域是 ,而差分方程(11)的依赖域则是 ,R.库朗等人曾经证明,差分格式收敛的一个必要条件是差分方程的依赖域应包含微分方程的依赖域,这个条件叫作“库朗条件”。从图3中可以看到,对于差分方程(6),这个条件是 ,即 。对于格式(9),库朗条件是 ,两者不同。对于格式(11),库朗条件是 ;在a>0时,显然不能成立,所以格式(11)当a>0时不收敛,因而也是无用的。格式(6)在a>0而库朗条件 满足时,的确是收敛的。因为 离散化误差 适合
由此可知:
又因差分格式与微分方程的初值相同, 。于是可知
这说明条件 满足时,格式(6)收敛。
如果a<0,格式(6)不收敛。但当 时,格式(11)收敛。这两个格式称为“迎风格式”,因为a>0时, 用向后差商代替,往上风取近似值;当a<0时则用向前差商代替,也是往上风取近似值。可见作(1)的差分格式时,要考虑波的传播方向。
⑤差分格式的稳定性
用一个差分格式计算 时,初值 的误差必然要影响到以后各层 。通常希望这误差的影响不会越来越大,以致完全歪曲了差分方法的真解,这便是稳定性问题。讨论时,常把问题化简,设初值 有误差 ,而以后的计算并不产生误差,由于误差 ,使 变成了 ,但 仍满足 所适合的差分格式。定义一种衡量t=tn层格点上 的大小的所谓范数 ,若有常数K>0使当△t、△x→0而0≤t=n△t≤T时,恒有 ,则称此差分格式是稳定的。以格式(6)为例,适合差分方程:
这说明,用格式(6)计算时,若步长比合于库朗条件,则初值误差的影响不增长,取使△t缩小,算到t=T时,也不再增大,因而格式是稳定的。
对于线性偏微分方程组的稳定性理论,J.von诺伊曼曾用傅里叶分析作了系统研究,把差分方程的解表成谐波的叠加,考察其中一个谐波
的增长情况,式中k为实数;G=G(k,△t)称为增长因子。若对于一切谐波,(12)的振幅一致有界,即对一切合于O≤n△t≤T的n和充分小的△t都有|Gn|≤K,K为常数,则此差分格式是稳定的。具体地说,对格式(6),把(12)代入(6),得:
而
故当 时,|G|≤1,解的振幅不增加,所以格式(6)是稳定的。
相容性和库朗条件都不能保证稳定性,例如对格式(9),把(12)代入,得:
而
故当sin k△x≠0时,恒有|G|>1,解的振幅逐层增加,所以虽然格式(9)是相容的格式,并且适合库朗条件,但它仍是不稳定的,因而也是无用的。
P.D.拉克斯1956年曾证明,对于线性偏微分方程组的适定的初值问题,一个与之相容的线性差分格式是收敛的格式的充分必要条件是这格式的稳定性。
非线性问题没有相应的等价定理。 物理上的定常问题,如弹性力学中的平衡问题,亚声速流、不可压枯性流、电磁场及引力场等可归结为椭圆型方程。其定解问题为各种边值问题,即要求解在某个区域D内满足微分方程,在边界上满足给定的边界条件。椭圆型方程的差分解法可归结为选取合理的差分网格,建立差分格式,求解代数方程组以及考察差分格式的收敛性等问题。
偏微分方程边值问题的差分方程组的特点是系数矩阵中非零元素很少,即是稀疏矩阵。近年来由于稀疏矩阵技术的发展,解差分方程组时,直接法受到了较多的重视。迭代法是用逐次逼近的方式得到差分方程组的解,它的存储量小,程序简单,因此常用于椭圆型差分方程组的求解。迭代方法很多,最基本的有三种:①同时位移法(也称雅可比法)②逐个位移法(也称赛德耳法)③松弛法三个方法中超松弛法收敛最快,是常用的方法之一。
G. 有限差分法的偏微分方程初值问题的差分法
许多物理现象随着时间而发生变化、如热传导过程、气体扩散过程和波的传播过程都与时间有关。描述这些过程的偏微分方程具有这样的性质;若初始时刻t=t0的解已给定,则t>t0时刻的解完全取决于初始条件和某些边界条件。利用差分法解这类问题,就是从初始值出发,通过差分格式沿时间增加的方向,逐步求出微分方程的近似解。 最简单的双曲型方程的初值问题是:
式中 为已知初值函数。这初值问题的解是:
由(2)可见,(1a)(1b)的解(2)当a>0时代表一个以有限的速度a沿特征线x-at=常数向右传播的波,而解 在点 的值完全由 在x轴上的点 的值决定。A点就是双曲型方程(1a)在P点的依赖域(图1)。现以初值问题(1)为例介绍初值问题差分方法的基本思想。
①剖分网格
用网格覆盖(1a),(1b)的定解区域,如图2所示,在x,t平面的上半部作两族平行于坐标轴的直线:
并称之为网格线。 分别称为空间步长和时间步长。网格线的交点 称为格点。
②建立差分格式
以下除特别声明外,总设a>0,由泰勒公式,有:
即
式中
是微分方程(1a)用它的解在相邻三个格点(见图2)上的值的差分来表示的形式。略去(4)中关于 高阶项 ,得到一个较简单的差分方程,但微分方程的解 不再是这方程的解,设这个方程的解是 , 满足的方程是:
式(6)还可写成:
初值条件(1b)此时就是:
差分方程(6)和相应的初值条件(7)合称差分格式,利用这些格式可逐步算出t=△t,2△t,…各时间层的 , ,…,等等。这个把微分方程化为近似的差分方程的过程常称为离散化。
③差分格式的截断误差和相容性
(5)中的是把微分方程充分光滑的解代入差分方程(6)的结果,它说明微分方程(1a)和差分方程(6)的区别,称为差分格式(6)的截断误差,式(6)的截断误差对△t和△x都是一阶的,写成O(△x+△t),因此称差分格式(6)为一阶相容格式。一般说,如果△x,△t趋于零,截断误差也趋于零,则差分方程与微分方程是相容的。不相容的格式的解不能作为原微分方程的近似解,因而是无用的。方程(1a)的离散化过程也不是唯一的。例如取数值微分公式:
代替微分方程(1a)中的 ,可得另一个差分方程:
它的截断误差是O(△x+△t)阶的,也是相容的差分格式,再若用数值微分公式
代替(1a)中的 ,又得到截断误差为O(△x+△t)的相容差分格式:
但是,并不是每个相容格式都有用。
④差分格式的收敛性
设 是求解区域中的一点,取步长 使 ,用差分格式算出 ,如果当△x,△t→0时, 便可用步长 充分小时的作为微分方程的解 的近似,这种差分格式便是收敛的。
双曲型微分方程的解,对求解区域内一点 而言,在初值区域内有一个依赖域,差分方程也是如此,对于差分方程(6),点 的依赖域是初值线上区间 。如令 =常数, ,则差分方程(6)在点 的依赖域为 ,并且步长比r固定时,依赖域与 无关。
差分方程(9)在 的依赖域是 ,而差分方程(11)的依赖域则是 ,R.库朗等人曾经证明,差分格式收敛的一个必要条件是差分方程的依赖域应包含微分方程的依赖域,这个条件叫作“库朗条件”。从图3中可以看到,对于差分方程(6),这个条件是 ,即 。对于格式(9),库朗条件是 ,两者不同。对于格式(11),库朗条件是 ;在a>0时,显然不能成立,所以格式(11)当a>0时不收敛,因而也是无用的。格式(6)在a>0而库朗条件 满足时,的确是收敛的。因为 离散化误差 适合
由此可知:
又因差分格式与微分方程的初值相同, 。于是可知
这说明条件 满足时,格式(6)收敛。
如果a<0,格式(6)不收敛。但当 时,格式(11)收敛。这两个格式称为“迎风格式”,因为a>0时, 用向后差商代替,往上风取近似值;当a<0时则用向前差商代替,也是往上风取近似值。可见作(1)的差分格式时,要考虑波的传播方向。
⑤差分格式的稳定性
用一个差分格式计算 时,初值 的误差必然要影响到以后各层 。通常希望这误差的影响不会越来越大,以致完全歪曲了差分方法的真解,这便是稳定性问题。讨论时,常把问题化简,设初值 有误差 ,而以后的计算并不产生误差,由于误差 ,使 变成了 ,但 仍满足 所适合的差分格式。定义一种衡量t=tn层格点上 的大小的所谓范数 ,若有常数K>0使当△t、△x→0而0≤t=n△t≤T时,恒有 ,则称此差分格式是稳定的。以格式(6)为例,适合差分方程:
这说明,用格式(6)计算时,若步长比合于库朗条件,则初值误差的影响不增长,取使△t缩小,算到t=T时,也不再增大,因而格式是稳定的。
对于线性偏微分方程组的稳定性理论,J.von诺伊曼曾用傅里叶分析作了系统研究,把差分方程的解表成谐波的叠加,考察其中一个谐波
的增长情况,式中k为实数;G=G(k,△t)称为增长因子。若对于一切谐波,(12)的振幅一致有界,即对一切合于O≤n△t≤T的n和充分小的△t都有|Gn|≤K,K为常数,则此差分格式是稳定的。具体地说,对格式(6),把(12)代入(6),得:
而
故当 时,|G|≤1,解的振幅不增加,所以格式(6)是稳定的。
相容性和库朗条件都不能保证稳定性,例如对格式(9),把(12)代入,得:
而
故当sin k△x≠0时,恒有|G|>1,解的振幅逐层增加,所以虽然格式(9)是相容的格式,并且适合库朗条件,但它仍是不稳定的,因而也是无用的。
P.D.拉克斯1956年曾证明,对于线性偏微分方程组的适定的初值问题,一个与之相容的线性差分格式是收敛的格式的充分必要条件是这格式的稳定性。
非线性问题没有相应的等价定理。 物理上的定常问题,如弹性力学中的平衡问题,亚声速流、不可压枯性流、电磁场及引力场等可归结为椭圆型方程。其定解问题为各种边值问题,即要求解在某个区域D内满足微分方程,在边界上满足给定的边界条件。椭圆型方程的差分解法可归结为选取合理的差分网格,建立差分格式,求解代数方程组以及考察差分格式的收敛性等问题。
偏微分方程边值问题的差分方程组的特点是系数矩阵中非零元素很少,即是稀疏矩阵。近年来由于稀疏矩阵技术的发展,解差分方程组时,直接法受到了较多的重视。迭代法是用逐次逼近的方式得到差分方程组的解,它的存储量小,程序简单,因此常用于椭圆型差分方程组的求解。迭代方法很多,最基本的有三种:①同时位移法(也称雅可比法)②逐个位移法(也称赛德耳法)③松弛法三个方法中超松弛法收敛最快,是常用的方法之一。
H. 关于计算流体力学的的问题.
不同的离散格式对计算结果的影响主要反映在迁移性和精度方面。以迁移性为例,如,用一阶迎风格式模拟纯扩散是不行的,而用中心差分模拟强对流也是会出错的。
upwind称为上风(迎风)格式,就迁移性来说,其适用于Pe数大(即对流占优)的情况;中心差分格式适用于扩散占优的情况。high resolution(高精度格式)主要用于间断(如激波)的捕获。目前常规计算大多二阶精度的格式,因为高精度格式在处理边界时很麻烦。计算结果的精度是由整个计算区域的精度决定,并不是说某个部分精度高,计算结果就准确了。
I. 差分格式的高阶迎风格式和NVD
高阶迎风格式通常是沿局部坐标,基于结构网格来构建,通过上游(),中心( )和下游()计算节点。对于任意非结构网格,上游节点是未知的。然而,一个虚构的上游单元 可按照矢量特性定义,在 和之间的虚拟面距离 是相同的,如同考虑面一样。
上游(),中心( )及下游()节点的定义
在附近的泰勒级数展开式用来得到关于 在, 及的三个方程。当对 求解这些方程(Gaskell和Laura,1988,在一致且正交网格情况下),可获得通用的加权近似方程:
(136)
参数定义了二阶和三阶精度格式的族系:
Leonard(1979)的关于对流运动学的三阶精度二次迎风插值(QUICK),
Warming和Beam(1976)的二阶精度线性迎风差分格式(LUDS)。
取代无量纲变量的应用,采用标准化变量 更为便利,由Leonard于1988年提出:
(137)
这样及 。引入限制原理:
(138)
方程(136)可简化为:
(139)
其中是关于 的函数:
(140)
可解释成通量限制项。
用标准化形式表示的格式图解表述采取“标准化变量图表”(NVD)。此图描述 与,如图3-4所示。